订单号重复的解决方案

2022/02/09

之前使用过Spring注解@PostConstruct和redis实现分布式流水号,参考:

分布式式流水号的实现

下面使用snowflake算法生成分布式唯一ID,工具类:

package com.zhongjian.util;

public class IdWorkerUtil{

    private long workerId;
    private long datacenterId;
    private long sequence;

    public IdWorkerUtil(long workerId, long datacenterId, long sequence){
        // sanity check for workerId
        if (workerId > maxWorkerId || workerId < 0) {
            throw new IllegalArgumentException(String.format("worker Id can't be greater than %d or less than 0",maxWorkerId));
        }
        if (datacenterId > maxDatacenterId || datacenterId < 0) {
            throw new IllegalArgumentException(String.format("datacenter Id can't be greater than %d or less than 0",maxDatacenterId));
        }
        System.out.printf("worker starting. timestamp left shift %d, datacenter id bits %d, worker id bits %d, sequence bits %d, workerid %d",
                timestampLeftShift, datacenterIdBits, workerIdBits, sequenceBits, workerId);

        this.workerId = workerId;
        this.datacenterId = datacenterId;
        this.sequence = sequence;
    }

    private long twepoch = 1288834974657L;

    private long workerIdBits = 5L;
    private long datacenterIdBits = 5L;
    private long maxWorkerId = -1L ^ (-1L << workerIdBits);
    private long maxDatacenterId = -1L ^ (-1L << datacenterIdBits);
    private long sequenceBits = 12L;

    private long workerIdShift = sequenceBits;
    private long datacenterIdShift = sequenceBits + workerIdBits;
    private long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits;
    private long sequenceMask = -1L ^ (-1L << sequenceBits);

    private long lastTimestamp = -1L;

    public long getWorkerId(){
        return workerId;
    }

    public long getDatacenterId(){
        return datacenterId;
    }

    public long getTimestamp(){
        return System.currentTimeMillis();
    }

    public synchronized long nextId() {
        long timestamp = timeGen();

        if (timestamp < lastTimestamp) {
            System.err.printf("clock is moving backwards.  Rejecting requests until %d.", lastTimestamp);
            throw new RuntimeException(String.format("Clock moved backwards.  Refusing to generate id for %d milliseconds",
                    lastTimestamp - timestamp));
        }

        if (lastTimestamp == timestamp) {
            sequence = (sequence + 1) & sequenceMask;
            if (sequence == 0) {
                timestamp = tilNextMillis(lastTimestamp);
            }
        } else {
            sequence = 0;
        }

        lastTimestamp = timestamp;
        return ((timestamp - twepoch) << timestampLeftShift) |
                (datacenterId << datacenterIdShift) |
                (workerId << workerIdShift) |
                sequence;
    }

    private long tilNextMillis(long lastTimestamp) {
        long timestamp = timeGen();
        while (timestamp <= lastTimestamp) {
            timestamp = timeGen();
        }
        return timestamp;
    }

    private long timeGen(){
        return System.currentTimeMillis();
    }

    public static void main(String[] args) {
        IdWorkerUtil idWorkerUtil = new IdWorkerUtil(1,1,0L);
        System.out.println(idWorkerUtil.nextId());
    }

}

这个数字使用64位的二进制来表示,了解 全局分布式id的设计

  • 41-bit的时间可以表示(1L<<41)/(1000L360024*365)=69年的时间
  • 10-bit机器可以分别表示1024台机器。如果我们对IDC(机房)划分有需求,还可以将10-bit分5-bit给IDC,分5-bit给工作机器。这样就有32个IDC,每个IDC下可以有32台机器
  • 12个自增序列号可以表示2^12个ID,任一个机器在毫秒级别产生4096个不同的id

优点:

  • 毫秒数在高位,自增序列在低位,整个ID都是趋势递增的。
  • 不依赖数据库等第三方系统,以服务的方式部署,稳定性更高,生成ID的性能也是非常高的。
  • 可以根据自身业务特性分配bit位,非常灵活。

缺点:

  • 强依赖机器时钟,如果机器上时钟回拨,会导致发号重复或者服务会处于不可用状态。

一般来说,采用这种方案就解决了

Post Directory